Fabrication and heating rate study of microscopic surface electrode ion traps

نویسندگان

  • N Daniilidis
  • S Narayanan
  • S A Möller
  • R Clark
  • T E Lee
  • P J Leek
چکیده

We report heating rate measurements in a microfabricated goldon-sapphire surface electrode ion trap with a trapping height of approximately 240μm. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation, the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion-loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and the possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed onto metal surfaces and amorphous dielectrics. 8 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 013032 1367-2630/11/013032+17$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suppression of heating rates in cryogenic surface-electrode ion traps.

Dense arrays of trapped ions provide one way of scaling up ion trap quantum information processing. However, miniaturization of ion traps is currently limited by sharply increasing motional state decoherence at sub-100 mum ion-electrode distances. We characterize heating rates in cryogenically cooled surface-electrode traps, with characteristic sizes in the 75 to 150 mum range. Upon cooling to ...

متن کامل

Microscopic model of electric-field-noise heating in ion traps

Citation Safavi-Naini, A. et al. " Microscopic model of electric-field-noise heating in ion traps. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Motional heating...

متن کامل

Scaling and suppression of anomalous heating in ion traps.

We measure and characterize anomalous motional heating of an atomic ion confined in the lowest quantum levels of a novel rf ion trap that features moveable electrodes. The scaling of heating with electrode proximity is measured, and when the electrodes are cooled from 300 to 150 K, the heating rate is suppressed by an order of magnitude. This provides direct evidence that anomalous motional hea...

متن کامل

Heating of trapped ions from the quantum ground state

We have investigated motional heating of laser-cooled Be ions held in radio-frequency ~Paul! traps. We have measured heating rates in a variety of traps with different geometries, electrode materials, and characteristic sizes. The results show that heating is due to electric-field noise from the trap electrodes that exerts a stochastic fluctuating force on the ion. The scaling of the heating ra...

متن کامل

Finite-geometry models of electric field noise from patch potentials in ion traps

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We model electric field noise from fluctuating patch potentials on conducting surfaces by taking into account the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011